What role has the X-CLARITY tissue clearing system played within your research? What do you do with this tissue clearing system?
Before the X-CLARITY system came up on the market, a few years ago, we were using passive clearing to clear out samples, which took us weeks or months. With this new system, this process can be done within six or seven hours, you can even clear an entire brain in this time.
The X-CLARITY therefore brings obvious advantages. It saves a lot of time, we were able to image an entire set of brain and spinal cords in a relatively short amount of time. This allowed us to clearly see the benefit of the approaches were having on spinal cord networks following an injury. It’s a great device to save time for your research.
Another benefit of the X-CLARITY system is that it allows you to better standardize your methodology, otherwise it’s difficult to have quantitative measures. Previously, all we could do was produce qualitative data, as it was difficult to quantify the amount of fibers in a sample.
Using the X-CLARITY system gives us clarity with standardizing the clearing process. Being able to have quantitative data enables all the brain samples to be compared with each other because they will all follow the same protocol, in different conditions. It will be a huge advantage in having quantitative analysis.
In summary, the X-CLARITY system benefits researchers by saving a lot of time and helping to standardize protocols in the lab.
How do you foresee the X-CLARITY tissue clearing system helping your research? What would you share with others about it?
The X-CLARITY system will help us to understand how the network reorganizes after the injury. This system allows you to visualize and follow the course of an axon coming from the motor cortex, coming down to the lumbar spinal cord. You can visualize, in 3D, the course of single or several axons when they go around the lesion for example.
This is something that is unique to the X-CLARITY system at the moment. That’s why this technique is very exciting. Compared to classical storage techniques, when working on brain and spinal cord in very thin slices they are all in 2D images and this makes it difficult to get the whole picture of what’s going on.
Using the clarity we get from the X-CLARITY system, recently in a few sample we have been able to see fiber tracks that we were not able to visualize in 2D sections. We were surprised to see how the axons were actually organizing into different, segregating bundles. This is something we could not see when using classic techniques.